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Abstract. The combined effect of an anisotropic surface tension and interface kinetics in dendritic crystal
growth is studied numerically by a fully dynamical front-tracking method in two dimensions. It is shown
how kinetic effects can be incorporated into the algorithm without causing numerical instabilities. The
results are compared to the theory of E.A. Brener and V.I. Mel’nikov (Adv. Phys. 40, 53 (1991)). A
particularly interesting case arises when the directions of minimum surface tension and minimum kinetic
effect are different. In this case, when the deviation from local equilibrium is increased, the predicted
transition from dendrites growing into the direction of the minimum surface stiffness to the direction of
minimum kinetic effect is confirmed. Dendrites near this transition show strong oscillations and correlated
side-branching. The transition where the oscillating dendrites change direction shows hysteresis.

PACS. 81.10.Aj Theory and models of crystal growth; physics of crystal growth, crystal morphology
and orientation – 68.70.+w Whiskers and dendrites (growth, structure, and non-electronic properties) –
05.70.Fh Phase transitions: general studies

1 Introduction

Diffusion-controlled growth is a typical example of pattern
formation in nonequilibrium systems [1]. It occurs when
two possible phases of a system are driven out of coexis-
tence so that one of the phases grows at the expense of
the other phase. This type of phase change usually requires
the diffusive transport of at least one conserved quantity
such as the latent heat of solidification. It is assumed here
that the two phases do not mix perfectly but are sep-
arated by an interface which moves during the growth.
The dynamics and shape of this moving boundary can be
very complicated and requires an efficient numerical algo-
rithm. Recently, a front-tracking method was developed
in which the interface is treated explicitly and coupled to
a diffusion field which is discretized on a cubic lattice [2].
The artificial anisotropy introduced by the lattice is sig-
nificantly reduced by averaging over a stack of lattices
which are rotated with respect to each other. The algo-
rithm does not rely on the quasi-stationary approximation
and has been successfully applied to study non-stationary
problems with a complex and even fractal shape of the
interface [3].

Originally, the method was designed to treat solidifi-
cation under the assumption of local thermal equilibrium
at the solid-liquid boundary. However, this is only realized
when the interface kinetics is infinitely fast. Usually, for
the interface to grow, a finite driving force such as under-
cooling is required at the interface. Above the roughening
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temperature, and for small deviations from equilibrium,
there is an Onsager relation between the driving force and
the response of the interface: the growth velocity of the
interface is equal to the interface undercooling times a ki-
netic coefficient. This effect is of particular importance in
directional solidification of certain organic crystals [4], and
in step-flow growth of metals and semiconductors during
Molecular Beam Epitaxy [5], which can be described by
the Burton-Carbrera-Frank model [6].

The most frequently encountered growth morphology
in diffusion-controlled growth is the dendrite. The den-
dritic shape is basically a “needle crystal” with a parabolic
tip decorated on its sides by secondary branches. It has
been shown that the anisotropy of the surface tension
plays an essential role in the selection of the shape and
the growth speed of the dendrite [7–9]. In fact, no den-
drites are possible in isotropic systems. The crystalline
anisotropy considered here is assumed to be sufficiently
small and nonsingular so that the crystal will not exhibit
facets. It is less well-known that the selection of dendrites
can also be determined exclusively by the anisotropy of
the kinetic coefficient [10]. In this paper, I show how ki-
netic effects can be incorporated into the algorithm with-
out causing numerical instabilities. This method is used to
investigate the combined effect of interface tension and in-
terface kinetics on the growth of dendrites. The kinetic ef-
fect is expected to determine the selection at large driving
forces. At small undercooling the dendrite operating point
should be dominated by the surface tension anisotropy.
The situation where the direction of minimum surface
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stiffness agrees with the direction of minimum kinetic ef-
fect has been studied numerically by Saito et al. [11] with
a quasistationary Green’s function approach. When those
directions differ, an oscillatory instability has been pre-
dicted [12] which cannot be treated with this approach,
but requires a fully-dynamical method.

The system considered here is a two-dimensional crys-
tal growing into its undercooled melt in which the growth
is controlled by the diffusion of the latent heat of freezing.
Deep in the liquid, the temperature T∞ is kept below the
melting temperature TM. Due to the latent heat L (per
unit volume) produced by solidification, the temperature
T near the solid is elevated. The normalized temperature
field, u = cp(T − T∞)/L, obeys the diffusion equation,

∂u

∂t
= D∇2u , (1)

where D is the thermal diffusivity and cp the specific heat.
When the crystal is growing with a normal velocity vn, the
latent heat produced at the solidification front is trans-
ported away by the heat flow. Conservation of energy then
implies

vn = −D∇u · n , (2)

where n is the normal vector of the interface. For simplic-
ity, only the so-called one-sided model is considered here
in which diffusion takes place only on the “liquid” side
of the interface. A generalization to a two-sided model is
straightforward and necessary for other applications such
as the growth of vicinal surfaces [5,13]. A rough non-
faceted interface can be regarded as being in local equilib-
rium, and the temperature of a planar interface is equal to
the melting temperature TM. For a curved interface with
local curvature κ, the equilibrium value of ueq is reduced
by the Gibbs-Thomson effect according to

ueq = ∆− dκ , (3)

where ∆ = cp(TM − T∞)/L is the dimensionless under-
cooling and d is an anisotropic capillary length obtained
from an orientation-dependent interfacial tension γ(θ) as

d(θ) =
(
γ +

∂2γ

∂θ2

)
TMcp
L2

· (4)

For a crystal to grow, the interface must be undercooled so
that the temperature at the interface, ui, differs from ueq.
This temperature difference acts as a driving force and is
linearly related to the heat flux via the Onsager-relation

ui − ueq = β(θ) [D∇u · n] , (5)

where β(θ) is an anisotropic kinetic coefficient. It follows
that the normalized temperature field at the interface, ui,
must fulfill the boundary condition

ui = ∆− dκ− βvn . (6)

In the following, the crystal is assumed to have a cubic
symmetry, so that both the capillary length and the ki-
netic coefficient have a fourfold symmetry

d(θ) = d0(1− εS cos4θ) , (7)
β(θ) = β0(1− εK cos[4(θ − θ0)] , (8)

where εS and εK are small parameters which characterize
the anisotropy of the surface stiffness and of the kinetic
effect, respectively. The directions of minimum capillary
length (or minimum surface stiffness) and minimum ki-
netic effect are not necessarily the same. For the assumed
cubic symmetry these two directions can differ by an an-
gle θ0 = π/4. In the absence of surface tension and kinetic
effects, i.e. d0 = 0, and β0 = 0, Ivantsov [14] showed that
a parabolic needle crystal will grow steadily with a tip ra-
dius ρ. The undercooling ∆ determines the product of tip
radius and the growth velocity v, or the Peclet number
p = vρ/(2D), by the relation

∆ = 2
√
p ep

∫ ∞
√
p

exp(−x2) dx (9)

in two dimensions. However, the growth mode cannot be
determined uniquely since there are an infinite number
of possible combinations of v and ρ for a given prod-
uct p. Furthermore, all Ivantsov parabolas were found to
be unstable against small perturbations. The solvability
theory for infinitely fast kinetics (β0 = 0) [7–10] showed
that interface tension together with a non-zero anisotropy
εS is necessary to stabilize a unique Ivantsov-parabola
against infinitesimal perturbations. The universal scaling
law vd0/(2Dp2) = σ(εS) for the growth rate was derived,
which shows that σ depends only on the anisotropy εS of
the capillary length, but is independent of the undercool-
ing ∆. This scaling relation has been confirmed by pre-
vious numerical simulations [15,16]. For small anisotropy,
σ was shown to be proportional to ε7/4

S , and the velocity
scales as

v ∼ ε7/4
S

Dp2

d0
· (10)

2 Numerical method

The diffusion equation (1) together with the boundary
conditions (2) and (3) can be solved using a finite dif-
ference approach, in which the temperature field is dis-
cretized on a simple (cubic) grid. The interface is rep-
resented by a set of points (interface points) which are
thought to be connected with straight lines, and the
boundary conditions on them are interpolated from the
nearest-neighbor points. The distance between interface
points changes during the growth, but is kept approxi-
mately constant by inserting and removing points. The po-
sitions of interface points are not restricted to grid points
of the diffusional lattice. This requires extrapolation and
interpolation procedures to establish the right bound-
ary conditions for the temperature field and to calculate
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the normal velocity of every interface point by means of
equation (2).

Every interface point is shifted by vn δtn during an
iteration with the time step δt. The grid introduces a sig-
nificant amount of artificial anisotropy because it is not
adapted to the shape of the interface. This error can be
greatly reduced by solving the diffusion equation simulta-
neously on several grids (typically two or four) which are
rotated with respect to each other. In every timestep, the
interface points are advanced with velocities which are av-
eraged over those grids (see [2] for details). A naive way
to incorporate kinetics into this method is to modify the
Gibbs-Thomson boundary condition by the kinetic coeffi-
cient (Eq. (6)) and to use the normal velocity determined
in the previous time step. This works well for small kinetic
coefficients β0 < 0.5, and a stationary dendritic solution
was found. Unfortunately, at large deviations from local
equilibrium, β0 > 0.5, an oscillatory numerical instability
occurred: already after 5 to 10 time steps the values of
the local velocities at almost all interface points increased
without bound and the sign of the velocities alternated
during the iterations. This rapid evolution of the instabil-
ity led to the assumption that the dynamics of the dif-
fusion field is irrelevant here, and that the instability is
caused by an inconsistent implementation of the bound-
ary condition (6). On the one hand, condition (6) is used
in the procedure to calculate the local velocity by means of
the gradient of the diffusion field. On the other, the con-
dition depends itself on the local velocity. I show below
that it is indeed this feed-back mechanism which causes
the numerical oscillatory instability.

The calculation of the normal velocity and the deter-
mination of the boundary condition can be approximately
described by

vm =
D

a
(um − ũ) (11)

um+1 = ∆− βvm, (12)

where a is the lattice constant of the diffusional grid, and
m denotes the number of iterations. Curvature effects are
neglected here for simplicity, and ũ is the value of the dif-
fusion field in the “liquid” phase, a distance a from the
interface. Equation (11) is a very simplified implementa-
tion of (2) and describes the basic features of how the
gradient of the diffusion field at the interface points is de-
termined in the front-tracking algorithm (see [2] for details
of the method). ũ is determined by interpolation from the
surrounding nodes of the diffusional lattice. In this analy-
sis ũ is assumed to be time-independent on the fast time
scale of the instability. This decoupling from the dynam-
ics of the diffusion field makes it possible to close the set
of equations, (11, 12), and to solve them easily. Inserting
(11) into (12) yields

um+1 = ∆− βD

a
(um − ũ). (13)

Define the stationary solution us of this equation by
um+1

s = ums , and express um as um = us + δum. The

solution for δum can be easily found to be

δum =
(
−βD

a

)m
δu0 . (14)

Hence, the stationary solution is only stable, i.e. δum → 0
for m → ∞, when βD/a < 1. The critical kinetic coeffi-
cient βC = 1 (D = 1 and a = 1 in the simulation) is of the
same order of magnitude than the value βC ≈ 0.5 found
numerically.

One possibility to avoid this instability would be to
use an implicit method, in which the boundary value ui

is determined self-consistently. However, this is very time-
consuming because the actual formula to determine the
local velocity is much more complex than equation (11)
and is coupled to the neighboring interface points. There-
fore, a simple adaptive method is used which is much more
efficient, at the cost of small numerical errors which can
be reduced by using smaller time increments δt. The idea
is to use another velocity ṽn instead of vn in the boundary
value equation (6). This velocity is constructed to change
slowly, but to converge to vn (for simplicity the index n
for the normal direction is omitted in the following):

ṽm = ṽm−1 − 1
τ

(ṽm−1 − vm) . (15)

By going to the limit τ →∞ it can be easily seen that this
method should be able to eliminate the instability. In this
case, ṽ is a constant and the actual velocity vn does not
appear at all in the boundary condition. This corresponds
to the situation of local equilibrium (with a renormalized
undercooling ∆̃ = ∆ − βṽ), which is stable. Of course,
in the actual simulation, the time scale τ has to be small
compared to the time scale of the structure formation.
Otherwise, the actual dynamics of the pattern, such as
the formation of bumps, oscillations of the dendritic tip,
etc., would depend on the artificial dynamics of ṽ. This
separation of time scales can be easily achieved, because
the instability depends only on the number of iterations
m, but not on the physical time step δt. That means going
to very small time steps makes the dynamics of the pattern
formation very slow compared to τ .

Let us analyse how large τ should be to suppress the
instability. equation (12) is modified to

um+1 = ∆− βṽm , (16)

where ṽm is given by equation (15). Successive insertion
of (11) and (15) for m, m−1, m−2, ... into equation (16)
yields

um+1 = ∆− βD

aτ

m−1∑
l=0

(
1− 1

τ

)l
{um−l − ũ}

− β
(

1− 1
τ

)m
ṽ0 . (17)

For large m and τ > 0.5, the last term can be neglected,
and the stationary solution is obtained as

us = ∆− βD

aτ
(us − ũ)

m−1∑
l=0

(
1− 1

τ

)l
. (18)
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For m → ∞, it follows that us = ∆ − βD(us − ũ)/a, as
expected, because the relaxation procedure (15) must not
influence the stationary solution. For a small perturbation,
δu, of the stationary solution one has

δum+1 = K
(
δum +Rδum−1 +R2δum−2 + ...

)
, (19)

with K = −βD/(aτ), and R = 1− 1/τ . Assuming δum to
be zero for all m < 0, an iterative solution of (19) yields

δum+1 = K(K +R)m δu0 . (20)

Stability is achieved if |K +R| < 1, i.e. if

τ >
1
2

(
1 +

Dβ

a

)
. (21)

This provides a stable iteration scheme for the self-
consistent determination of the boundary condition during
the evolution of the interface. By choosing a sufficiently
large relaxation time τ , the algorithm remains stable even
for large kinetic coefficients β0. After implementing this
scheme, the observed numerical instabilities at large β0

disappeared. The necessary minimum τ was slightly larger
than given in condition (21). This is not surprising since
the present analysis is strongly simplified and neglects
the curvature of the interface as well as the relaxation
of the diffusion field. As described later, oscillating den-
drites were found for certain values of the growth parame-
ters. In order to check whether these oscillations are influ-
enced by the stabilization dynamics, τ was increased by
a factor of two. No significant change of the oscillations
were found, which proves that the relaxation scheme can
also be used to study non-stationary structures.

3 Results and conclusion

First, the case without competition of the kinetic effects
and the surface tension is considered, i.e., where the angle
θ0 defined in (8) is zero. The numerical code was checked
by comparing results with previous simulations of den-
drites using a Green’s function method [11]. Especially sig-
nificant is a comparison at large kinetic coefficients, i.e.,
in a growth regime dominated by the kinetic effect. For
this purpose, calculations were performed at undercooling
∆ = 0.45 and a ratio ν = εK/εS = 1 (see columns 1 and 2
in Tab. 1). The preferred directions of the two anisotropies
are the same, i.e. θ0 = 0. The values for the growth veloc-
ities agree very well (within 9%), whereas the measured
tip radii are slightly too large. This discrepancy is not
dramatic, since the values for the radii are very small in
internal units, around 2 to 4 lattice units of the diffusional
grid, which is very close to the limit of numerical resolu-
tion.

Next, simulations were performed in the purely kinetic
growth regime, p

√
εKDβ0/d0 � 1, where the selection of

dendrites is supposed to be independent of the capillary
length d0 and the diffusion constant D. Brener et al. [10]
predicted the growth rate to be

v =
pε

5/4
K

γ0β0
, (22)

Fig. 1. Kinetic dendrite with isotropic surface tension, εS = 0,
for decreasing capillary length: d0 = 0.031 (smooth solid line),
d0 = 0.0155 (dashed), d0 = 0.0077 (dotted), and d0 = 0.0008
(solid line with many side-branches). See also column 3 to 6 in
Table 1. Parameters: ∆ = 0.45, εK = 0.1, β0 = 1.5485, D = 1.
Here and in the following, all length scales are given in internal
units of the diffusional grid δx, and all time scales are given in
units of δx2/D.

where γ0 is a constant of order one. p is the Peclet num-
ber which is related to the undercooling ∆ by equa-
tion (9). Four calculations were performed (columns 3 to
6 in Tab. 1), in which d0 was successively reduced. It was
found that the growth velocity v was not inversely propor-
tional to d0, as for a dendrite without kinetic effect, (10),
but changed less and less with decreasing d0. The extrap-
olation of the data to d0 = 0 resulted in a very small
value for the constant γ0 = 0.0877. The growth at d0 = 0
could not be directly simulated. For small d0 the dendritic
tip remained stable, but the interface became rougher and
rougher as d0 was decreased, because the distance between
side-branches scales with d0 (see Fig. 1).

There is a more interesting situation, where the pre-
ferred directions of the anisotropic kinetic coefficient and
the capillary length are different. In two dimensions, and
with the cubic symmetry considered here, the only pos-
sible angle between these two directions is θ0 = π/4. In
this case both effects are competing. The theory of Brener
et al. discusses all possible patterns in terms of the two
parameters:

µ = 2pε1/2
S

Dβ

d0
,

and

ν =
εK

εS
· (23)

µ measures the strength of the kinetic effect compared to
the effect of the surface tension, and ν is the ratio of the
two anisotropies. For all values of µ, stationary dendrites
are predicted which grow into the direction of the capil-
lary length (capillary dendrites). There is another branch
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Table 1. Simulation of kinetic dendrites on two rotated grids. Parameters: undercooling ∆ = 0.45, time step δt = 0.47,
mesh size 371×371, channel width L = 230, relaxation time τ = 6.4 for artificial boundary dynamics. Symbols: εS: fourfold
anisotropy of the capillary length, εK: fourfold anisotropy of the kinetic coefficient, d0: capillary length, β0: kinetic coefficient,
VTip: stationary growth velocity of the dendrite, RTip: radius of curvature at the tip of the dendrite, Pgeo: geometrical peclet
number Pgeo = VTipRTip/(2D). The values in parentheses were taken from [11] for comparison. All length scales are given in
units of the diffusional grid δx, and all time scales are given in units of δx2/D.

Run 1 2 3 4 5 6

εS 0.1 0.1 0 0 0 0
εK 0.1 0.1 0.1 0.1 0.1 0.1
d0 0.03097(0.001) 0.0144(0.001) 0.03097 0.0155 0.0077 0.0008
β0 1.5485(0.05) 2.1662(0.15) 1.5485 1.5485 1.5485 1.5485
VTip 0.0347(0.034) 0.0369(0.034) 0.0317 0.0435 0.050 0.058
RTip 3.4(2.911) 2.45(1.566) 3.98 2.57 2.2±0.2 1.85±0.3
Pgeo 0.059(0.0495) 0.0452(0.02664) 0.0631 0.0559 0.0550 0.0536

of solutions – dendrites growing into the direction of min-
imum kinetic effect (kinetic dendrites), i.e, at an angle
of π/4 with respect to the capillary dendrites. However,
this is only possible above a certain critical value µcrit.
At these high values of µ the capillary dendrites should
grow slower than the kinetic ones and are very likely to
be linearly unstable. According to theory, no other growth
directions are possible. This is fully consistent with the
behavior shown in Figure 2b: Far above µcrit a dendrite
growing into the “wrong” direction of the minimum cap-
illary length was initialized. This solution turned out to
be unstable: two kinetic dendrites growing at an angle of
π/4 with respect to the initial direction developed from
the first side-branches of the original crystal.

A linear stability analysis in the framework of the
Boundary-Layer Model [17] by Liu et al. [12] showed
that for increasing µ, capillary dendrites become unsta-
ble even before kinetic dendrites exist. They found a gap,
µ1 < µ < µ2, µ2 & µcrit, in which both types of den-
drites show an oscillatory linear instability and observed
complex non-stationary patterns. This excluded the pos-
sibility of a coexistence of both types of dendrites. So far,
this transition has not been investigated within the ex-
act fully-dynamical solidification model. The critical value
µcrit depends on ν, and is supposed to be of the order of
one at ν = 1. Elsewhere one has

µcrit ∼ ν−1 for ν � 1

µcrit ∼ ν−3/2 for ν � 1 . (24)

To investigate the transition at ν = 1, a dendrite was
initialized with µ = 4.28 in a broad channel with reflect-
ing boundary conditions. The direction of the channel was
chosen to be the same as the expected growth direction
of a kinetic dendrite. Since µ � 1, the initialized needle
crystal relaxes towards a kinetic dendrite without chang-
ing the direction of growth. Figure 2a shows the final state
superimposed with a picture of a dendrite where the an-
gle θ0 between the two anisotropies is zero. We note that
there is only a slight difference in the shape of the struc-
ture, which in an experiment would make it hard to tell
which one of the two cases θ0 = 0 or θ0 = π/4 is realized.

Fig. 2. (a) The final state of a kinetic dendrite at µ = 4.28
and θ0 = π/4 (dashed line). Superimposed is a dendrite with
the same parameters, but θ0 = 0 (solid line). The direction
of growth is determined by the minimum of the kinetic effect.
(b) Snapshots of the initial development of a dendrite µ = 4.28
and θ0 = π/4 which was initialized in the “wrong” direction,
i.e. the direction of minimum capillary length and maximum
kinetic effect. This structure is not stable and the first side-
branches develop into two kinetic denrites growing at an angle
of π/4 with respect to the axis of the channel. Parameters:
d0 = 0.031, ∆ = 0.45, β0 = 1.5485, D = 1, εS = εK = 0.1.
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The transition area µ ∼ 1 was approached from above
by successively reducing µ. In all following simulations
µ was changed only by changing the kinetic coefficient
β0; all other growth parameters were kept constant. Af-
ter every change of µ, the calculation was continued un-
til the pattern had reached a new stationary state. Near
µ ∼ 1, strong oscillations of the tip radius and the ve-
locity were observed. Although the dendritic tip was no
longer parabolic, but periodically deformed by strong side-
branching, the basic structure of a dendrite survived: one
main shaft decorated with branches. The structure of the
side-branches and the oscillations are very regular because
both sides of the shaft are synchronized and communicate
through the deformation of the tip. I call this structure an
oscillating kinetic dendrite, because its appearance is still
very close to that of an ordinary dendrite.

For smaller µ, two oscillating capillary dendrites were
born growing at an angle of π/4 with respect to the axis of
the channel. Of course, this setup cannot be used to fur-
ther investigate these dendrites since they would soon hit
the wall of the channel. Therefore, I investigated the tran-
sition starting with a capillary dendrite at small µ� 0.5
growing parallel to the axis of the channel. The temporal
evolution of this dendrite at µ = 0.25 is shown in Fig-
ure 3a. Basically, the scenario for increasing µ looks the
same as that observed for the kinetic dendrites for decreas-
ing µ: the formation of side-branches becomes stronger
and stronger, which causes strong oscillations of the ve-
locity with periodic asymmetric deformations of the tip.
This is shown for µ = 0.4 and µ = 0.6 in Figures 3b and
3c, respectively. Compared to Figure 3a, the side-branches
are much larger and more regular. The corresponding ve-
locities and tip radii are plotted as a function of time in
Figure 4. The period of the oscillations agrees within 30%
with the convective time scale Tcon = VTip/Λ, where Λ is
the distance between side-branches. At sufficiently large µ,
the average growth direction changed and a kinetic den-
drite started to grow at an angle of π/4 with respect to
the previous direction.

Two fundamental mechanisms for the formation of
sidebranches have been discussed in the literature: (i) a
non-linear mode of tip-splitting or dynamical tip oscilla-
tions, and (ii) the selective amplification of thermal noise.
The latter mechanism consists of a convective instabil-
ity triggered at the tip of the dendrite by the surround-
ing noise. Noise-induced wavepackets generated in the tip
region grow exponentially in amplitude, and spread and
stretch as they move down the sides of the dendrite, pro-
ducing a train of sidebranches. This instability is analo-
gous to the so-called Mullins-Sekerka instability of a pla-
nar front, translated to a parabolic front.

Recently, the linear theory of noise-amplification [18]
has been improved substantially by Brener et al. [19].
They showed that the amplification rate depends very sen-
sitively on the shape of the crystal. Experiments for the
sidebranching of xenon dendrites [20], as well as phase-
field simulations with included noise [21], are in quantita-
tive agreement with this theory.

In the other proposed mechanism for sidebranching,
(i), it is argued that nonlinearities in the equation of mo-
tion can lead to a stable oscillating growth mode [22]
which can act as a source of the sidebranches. Tip os-
cillations lead to a more or less periodic appearance of the
branches and to a correlation between sidebranches on op-
posite sides of the dendrite. Although no tip oscillations
were detected in the free growth experiment mentioned
above, which excludes mechanism (i), it seems to apply to
other systems. The experiments of Georgelin et al. [23] for
directional solidification were only in part consistent with
the theory of noise-amplification. They observed strong
correlations of the sidebranches on opposite sides of the
dendrites for certain parameters, consistent with a phase
locking growth mechanism. This is exactly what is found
here near the transition point between the kinetic and the
capillary dendrite. Far from the transition we have the or-
dinary noise-amplification mechanism (ii) of free growth,
but close to the transition the non-linear mechanism (i)
was observed: Sidebranches themselves induce perturba-
tions to which the tip, where new sidebranches are gener-
ated, is sensitive. This feature results from a competition
between the direct effect of the noise and the non-linear
effect of the feedback. The noise in my simulations is non-
thermal. It originates from the small intrapolation and
extrapolation errors of the front-tracking algorithm.

This feedback mechanism has been observed earlier
as a transient in simulations of free dendritic growth at
low anisotropy and large (non-thermal) noise [2]. In this
situation sidebranches grow very quickly and are not con-
vected fast enough away from the tip to leave the tip un-
perturbed. They cause an asymmetric, periodic deforma-
tion of the tip and oscillations of the tip velocity. This
was not observed in recent simulations by the phase-field
model [21], probably because the noise level was lower and
an artificial symmetry of the dendrite was imposed which
prevents asymmetric tip-deformations.

The correlation of sidebranches on both sides of the
dendrite in free growth can also be achieved by external
means, such as periodic heating or pressure changing [24],
heating of the dendrite tip by a laser beam [25], or im-
posing an oscillatory flow field [26]. Sidebranches coupled
to an oscillating tip have also been found numerically in
narrow channels with a mismatch between the orientation
of the channel and the direction of minimum surface stiff-
ness [27].

In Figure 5 the growth rate of the dendrites (normal-
ized and averaged over time) in the stationary state is plot-
ted as a function of µ. The growth rate of both branches
of the solution reaches a minimum near the transition
point. µcrit is defined as the value where the velocity of
both branches is the same: µcrit = 0.617. The interest-
ing feature of this transition is that there is hysteresis
on both sides of µcrit, i.e., the transition is of first order.
For µ slightly smaller than µcrit, both types of oscillating
dendrites are stable, with the capillary structure growing
faster than the one controlled by the kinetic effect. For
µ slightly larger than µcrit, both types of oscillating den-
drites are still stable, but now the capillary structure is
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Fig. 3. Temporal evolution of a capillary dendrite for different values of µ. (a) µ = 0.25, considerably below the critical value. (b)
µ = 0.4, and (c) µ = 0.6, very close to the critical value. Parameters: d0 = 0.0417, ∆ = 0.5, β0 = 1.5485, D = 1, εS = εK = 0.15,
θ0 = π/4. As before all length scales are given in internal units of the diffusional grid δx, all time scales are given in units of
δx2/D.

Fig. 4. The tip velocity VTip and the tip radius RTip for the capillary dendrites shown in Figure 3 are plotted versus time.
a) µ = 0.25, b) µ = 0.4, and c) µ = 0.6.

slower. These results are fully consistent with those Liu
et al. [12] obtained in the boundary-layer approximation.
From their work, which was also done at ν = 1, a criti-
cal value of µcrit = 0.585 can be extracted, which is very
close to the value found here. Further investigations at a
larger ratio of anisotropies, ν = 3.33 (∆ = 0.5, εS = 0.075,
εK = 0.25) yielded µcrit = 0.135 ± 0.003. This is consis-
tent with the predicted scaling µcrit ∼ ν−1, because based

on the simulations at ν = 1 the expected value would be
µtheo = 0.617/ν = 0.185.

In summary, it was shown how a previously developed
front-tracking method for dendritic growth can be gen-
eralized to incorporate kinetic effects. This was done by
introducing an artificial dynamics at the phase boundary
which does not influence the pattern formation. It was
shown analytically how the time scale of this dynamics
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Fig. 5. The dimensionless growth rate σ = VTipd0/(2Dp(∆)2)
is plotted versus µ at constant undercooling ∆ = 0.5 and
anisotropy εS = εK = 0.15, θ0 = π/4. (•): capillary dendrite
with d0 = 0.04166; (�): capillary dendrite, where all length
scales (in units of the diffusional grid) were decreased by a fac-
tor of 1.6 to check the accuracy of the simulation; (◦): kinetic
dendrite with d0 = 0.04166/1.6; (?): kinetic dendrite, where all
length scales were increased by a factor of 1.6.

must be chosen to avoid numerical instabilities. The
method was used to numerically study dendritic growth
under the combined effect of surface tension anisotropy
and an anisotropic kinetic coefficient. This can lead to
oscillating dendrite-like structures which could not be in-
vestigated with previous quasi-stationary Green’s function
approaches. The results agree well with previous numer-
ical work and are consistent with theoretical predictions.
Both fundamental sidebranching mechanisms proposed in
the literature, the selective amplification of noise at the
tip of the dendrite and a non-linear mode of periodic tip
deformations leading to correlated sidebranches on oppo-
site sides of the dendrite, were observed. The first mecha-
nism dominates far from the transition point, where den-
drites change direction; the latter is important near the
transition.
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